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Abstract

Traditional finite element analyses of the stress state in regions with dissimilar materials are incapable of correctly
resolving the stress state because of the unbounded nature of the stresses. A finite element technique utilizing a coupled
global (special) element with traditional elements is presented. The global element includes the singular behavior at the
junction of dissimilar materials with or without traction-free surfaces. A hybrid global (special) element is developed
utilizing the exact solution for the stress and displacement fields based on the eigenfunction expansion method under
mechanical and thermal loading. The global element for arbitrary geometrical and material configurations, not limited
to a few dissimilar material sectors, is interfaced with traditional local (conventional) elements while satisfying the inter-
element continuity. The coupling between the hybrid global element and conventional finite elements is implemented
into ANSYs, a commercially available finite element program. Also, the global element is integrated into the ANSYS
graphical user interface for pre- and post-processing. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Adhesive bonding is a primary means for constructing components of layered material systems, such as a
microelectronic package. The primary components of these packages are the die, the die-attach (adhesive),
and the substrate. The packages are usually subjected to temperature excursions during manufacturing and
testing. These excursions, combined with the different thermal expansion coefficients of the package
components, result in residual thermal stresses. A layered system of materials responds differently, de-
pending on the combined interaction of thermal and mechanical loads and the geometry of the dissimilar
material junctions. These junctions are formed by sectors (wedges) of different materials bonded together.
High stress gradients are known to exist in the vicinity of the junction due to mismatch in thermal
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expansion coefficients and in elastic moduli. As reported by Williams (1952), the stress state near the
junction often has a singular behavior and the nature of the singularity is a function of the junction geo-
metry and elastic constants of the materials. Delamination and cracking failures usually initiate at these
junctions, influencing the reliability of the packages. Hence, it is essential to understand the effect of geo-
metry and material parameters on the singular behavior of the stress field near the junction of dissimilar
materials under combined mechanical and thermal loadings.

Previous analytical studies by Bogy (1968), Hein and Erdogan (1971), and Theocaris (1974) were con-
cerned with asymptotic solutions with the leading order term only; thus, the stress field was accurate at a
distance very close to the junction point. Munz and Yang (1992, 1993) and Munz et al. (1993) extended the
asymptotic solution method to investigate the stress field due to a change in uniform temperature near the
free edge of a junction of dissimilar materials. Inoue and Koguchi (1997) discussed the characteristics of
the stress intensity factors in a composite wedge of dissimilar materials under thermal loading and identified
conditions for which the stress intensity factors disappear. Recently, Gadi et al. (2000) investigated the
thermally induced logarithmic stress singularities in a composite wedge of dissimilar materials and provided
the solution form in the presence of double and triple roots of the characteristic equations leading to non-
separable eigenfunctions. The asymptotic stress field at distances slightly away from the junction point
suffers from accuracy, as reported by Qian and Akisanya (1999). Furthermore, the asymptotic solutions
only provide information on the strength of the singular behavior, not on the intensity of the singularity
essential for predicting failure initiation. However, the asymptotic solutions provide accurate values for the
stress intensity factors if the dissimilar material junction coincides with a crack tip. Also, the asymptotic
solutions served as interpolation functions in constructing special elements as part of the traditional finite
element analysis in order to capture the exact singular behavior of the stress field.

Concerning a crack lying either along the interface or perpendicular to the interface, Lin and Mar (1976)
developed a hybrid crack element for a bi-material interface. The assumed stress and displacement fields for
the hybrid element were derived based on the complex potential technique. In modeling a free edge with a
bi-material interface, Chen (1985) developed an element with appropriate interpolation functions built in to
account for the singularity at the free edge of a bi-material interface crack subjected to mechanical loading
only. Similar to Chen’s work, Gadi et al. (1995) and Pageau and Biggers (1996, 1997) developed enriched
finite elements that account for the singular behavior at the junction of dissimilar materials. Extending the
work by Mote (1971) and Bradford et al. (1984), Madenci et al. (1998) developed a global (special) element
based on the asymptotic solution for dissimilar material junctions and coupled it with conventional ele-
ments.

In all of these coupled special elements with built-in leading-order singularity and conventional elements,
the results are dependent on the special element’s size. In order to enhance the accuracy of the results, these
enriched elements usually employ transition (overlap) elements, thus introducing another degree of un-
certainty as to the extent of the zone for the transition elements. Also, inter-element compatibility between
the special and conventional elements is not satisfied, except for the special hybrid element by Lin and Mar
(1976). Thus, monotonic convergence of the results is not guaranteed. Also, these analyses are limited to
junctions of a few dissimilar materials.

In an effort to characterize the singularities at free edges with or without a crack, Munz and Yang (1992)
developed fifth-order polynomial expressions in terms of the leading-order term for the stress intensity
factors by combining the asymptotic solution with finite element analysis in conjunction with curve-fitting
techniques. Later, Akisanya and Fleck (1997) developed a method that utilizes a traditional finite element
combined with Betti’s reciprocal theorem involving a path-independent contour integral. This study in-
volved the evaluation of the stress intensity factor for a free-edge interface crack, the intensity of singularity
of a junction of dissimilar materials with a traction-free edge without a crack, and the strength of singu-
larity using the asymptotic solution. As an extension of this approach, Qian and Akisanya (1999) showed
that the asymptotic solution with a leading-order term is not sufficient to capture the accurate behavior of
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the singular stress field near the junction. Solutions obtained by this method are also dependent on the finite
element mesh density influencing the numerical evaluation of the path-independent integral.

In order to eliminate the aforementioned shortcomings while addressing either an open or a closed
junction of multiple dissimilar materials as shown in Fig. 1, a hybrid global (special) element is developed
utilizing the exact solution for the stress and displacement fields based on the eigenfunction expansion
method under mechanical and thermal loading. The global element for arbitrary geometrical and material
configurations, not limited to a few dissimilar material sectors, is interfaced with traditional local (con-
ventional) elements while satisfying the inter-element continuity. The coupling between the hybrid global
element and conventional finite elements is implemented into ANsYs, a commercially available finite ele-
ment program. Also, the global element is integrated into the ANsYs graphical user interface for pre- and
post-processing.

The validity of this approach is established through existing asymptotic solutions and conventional
detailed finite element analysis. The first validation problem involves a plate of two dissimilar materials
under either uniform tension or uniform temperature change. The second validation problem involves an
interface crack in a bi-material plate under uniform tension. The third validation problem concerns the
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Fig. 1. Conventional elements coupled with a global element for a closed and open junction.
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stress intensity factors at a crack tip perpendicular to the interface of a bi-material strip under uniform
strain. In the presence of a crack, the stress intensity factors and the J-integral values are calculated, and
their dependence on the global element size and the number of eigenvalues retained in the analysis is
presented. The stress intensity factors are also calculated for a crack situated between two semi-circular
inclusions embedded in a different material under uniform temperature.

2. Solution method

As illustrated in Fig. 1, a domain composed of multiple dissimilar material sectors can be partitioned
into inner and outer regions. In the inner region of either a closed or open junction, the presence of a
singular stress field near the junction arising from the material and geometric discontinuities requires an
exact solution of the governing equations. The solution to the outer region in which a singular stress field
does exist can be constructed by employing the finite element method with conventional elements.
Therefore, an accurate solution to the entire domain requires coupling of the exact solution in the inner
region with that of the approximate solution through the finite element method in the outer region. The
coupling can be achieved by developing a global element whose interpolation functions satisfy the gov-
erning equations exactly near the junction while enforcing the inter-element displacement continuity along
the common boundary and the nodes between the global and conventional elements.

Each sector of the domain forming either a closed or open junction represents an elastic, homogeneous,
and isotropic material with Young’s modulus, E;, Poisson’s ratio, v;, and a thermal expansion coefficient,
K. The interface between the (k — 1)th and the kth material sectors is defined by the angle 0, and is denoted
by 1*~1'0_ Perfect bonding with zero thickness is assumed along these interfaces. As shown in Fig. 2, the
interface angles are measured in the counterclockwise direction from the reference Cartesian coordinate

b~ Traction

(»’(7—/" free surfaces

1

Fig. 2. Description of the global element geometry and numbering of the material sections and the interfaces.
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system (x', ') whose horizontal axis is aligned with the first radial boundary of the first material sector. Its
origin and the origin of a global Cartesian coordinate system (x,y) coincide with the junction.

As shown in Fig. 2, the kth segment of the inner region (global element) boundary associated with the
kth material sector is denoted by I';, and its unit normal to the boundary is a®). Along the interfaces labeled
as I*~1%) and 1®4t1  the radial boundaries of the kth sector and their unit normal vectors are denoted by
T, 1® and I'y, n®, respectively. The distinction in notation for the boundaries and their corresponding
unit normal vectors of each sector of the region facilitates the simplification of total potential energy ex-
pression for the global element. It is worth mentioning that the solution method is developed under plane
stress assumptions. Therefore, the material constants must be adjusted according to E; = E;/(1 — v}),
v, = v/(1 —v), and x; = k(1 + v) when considering plane strain conditions.

2.1. Interpolation functions for the global element

As suggested by Williams (1952) and later extended by Munz et al. (1993), for combined mechanical and
uniform thermal loading, the stress and displacement components in the £th material sector are represented
by

ol (r,0) = > 1 E (05 7) + £ (0) (1)
n=0
and
uD(r,0) = Zri”” G (0;2,) + r[gik)(ﬂ) + 1 Tyd,4) + r1n rh®) (0) (2)
n=0

witho, f=r, 0 (k=1,2,...,K), 4 =0,and 4, 20 forn=1,2,...,N. The origin of the polar coordinate
system (r, 0) coincides with the junction of the vertices. The unknown parameter, /, is a global variable and
that it is valid for each sector of the inner region. It depends on the material properties, the geometric
configurations and the number of material sectors. The uniform temperature change is denoted by 7, and
the symbol 0,4 represents the Kronecker delta. Under plane stress conditions, the non-dimensional func-
tions F;X(;) (0; ), GD(0; ), ﬁf,’;)(H), 2!0(0) and AP (0) satisfying the equilibrium and compatibility equations
are expressed explicitly in Appendix A. The non-singular stress and displacement terms arising from
thermal loading are captured through fof;;)(ﬁ), 2©(6) and AP (0). This representation of the displacement
field is identical to that of suggested by Gadi et al. (2000) for 1y = 0. As explained later in this section, the
roots of multiplicity for n > 0 are identified and the solution is constructed by redefining the solution vector
as the linear combination of independent eigenvectors.

Prior to enforcing the continuity equations and boundary conditions, a combination of these functions is
recast as

p(0;2,) =P (0: 2,)q; n=0,1,....N 3)

p(0) = PO @
and

69(0:2,) = T(0; )4 n=0,1,....N 5)

t(0) = T (0)q" (6)

in which the vectors p®), p®), t® t® q® and q* are defined by

n 2> "¢
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p" = {750, £5(0),2°(0), & 0). 1 (0)} (7)
o = {F (0 ) F(0:.22), G(0: 1), G (0:2) } (8)
@ = {0500} 9)
6 = {F 02, F 0:22)} (10)
" = {4®,BY.cl, DY, £V} (11)
0l = {480, 0) (12)

P, Ti,k), and Tff) are given in Appendix A.
In the case of an open junction, the traction-free boundary conditions and the continuity conditions
between the adjacent sectors are given by

The explicit form of matrices P®, P

t(0) = t%(0x) =0 (13)
t(0; 1) =t (0x; 1,) =0 (14)
pH(0,) — p¥V(0,) = ) — ¥+ (15)
P (0k; 2,) — V(045 2,) = 0 (16)

withk=1,....K—1landn=0,...,N.
In the case of a closed junction, the continuity conditions between the adjacent sectors are given by

o (0) — 0 2m) =) - (17)
P, (0:2,) —pi (215 ,) = 0 (18)
P (06) — pV(05) = 1) — Y (19)
Y (0k; 20) — P (45 2) = 0 (20)

withk=1,...,K —1and n=0,...,N. The vector r¥) is defined as

r®" ={0,0, — 1,7y, 0,0} (21)

Along with the boundary conditions and continuity of displacement and traction components, it is
necessary to suppress the rigid-body rotation of any one of the material sectors. Without loss of generality,
the rigid-body rotation mode arising from the complementary solution is prevented by requiring that

Vk—3

iE, CV4+EV=0 or CiqV =0 (22)

where C; ={0,0,v; — 3/E;,0,1}. This constraint eliminates the constant terms arising in the expression
given explicitly in Appendix A.



A. Barut et al. | International Journal of Solids and Structures 38 (2001) 9077-9109 9083

Enforcing these conditions associated with either a closed or an open junction of K dissimilar material
sectors leads to a non-homogeneous and a homogeneous system of equations in the form

Sig. =1, and Q,(4)q, =0 (23)

with j = C, O; the subscript j indicates the type of junction. The subscripts C and O refer to the closed and
open junction, respectively. The vectors of unknown coefficients q, and q, are defined by

T T T T T
q = {qﬁ” 42,7, g5 gl } (24)

and
T T T T T
q) = {q,ﬁ” 47,0, g ) g } (25)

The known vectors, r;, the coefficient matrices, S; and Q; with j = C, O, are given explicitly in Appendix A.

A non-trivial solution to the homogeneous system exists for values of 4, that cause the determinant of
the coefficient matrix Q;(4,) to vanish. They may be complex, depending on the properties of the material
sectors. These particular values of 4, are the roots of the characteristic equation

|Q;(7)| =0 withn=0,1,...,N (26)

The roots may be repeated or distinct. However, the numerical solution of the characteristic equation does
not readily reveal the multiplicity of each root, A,. Therefore, an auxiliary homogeneous system of equa-
tions is constructed in the form of a complex eigenvalue problem

[Q;(%) — Al]q, =0 (27)

in order to determine the multiplicity of each root. The unknown parameter A represents the eigenvalue,
and I is the identity matrix. Considering the root 4,, the eigenvector(s) arising from zero eigenvalue(s),
A = 0, establishes the multiplicity of the root 4, and the solution vector for

Qj(/ln)qn = 0 (28)
Therefore, the solution vector, q,, associated with the root, 4,, can be constructed as a linear combination
of the independent eigenvectors, §,,, corresponding to A, = 0, with » =1,...,R,, in the form

Ra
q, = Z‘xm‘(inr (29)

r=1

in which R, denotes the multiplicity of the root, 4,, and «,,. represents the unknown constants.
In accordance with the definition of q,, the known eigenvector q,, is defined as

_ (T _ T _(\T 1T T
T = {q,sv 427,q0, g o } (30)

The homogeneous solution given in Eq. (29) includes a rigid-body rotation mode for » = 0. Therefore,
the rigid-body modes appearing in the generalized coordinates are suppressed by imposing the condition of
no-rigid-body rotation in the form

R Ry ph)
Zoco,.b(()r> =0 or oy= —Z%am =0 (31)
r=1 r=2 b01

in which Bélr) are the second elements of the eigenvectors, q,. Invoking the expression for oy directly into
the Eq. (29) permits
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Ry
q, = Z Ocnr(inr (32)
r=14d,0
in which
_ ) _
i = qOr—EE—;‘)qOI; (r=2,...,R,)and n=0
nr 1
Q5 (r=12,...,R,)and n #0
and

5 — 1, n=0
n0 — 07 n ?é 0
Therefore, the solution vector defined in Eq. (32) is utilized in the vectorial representation of the stress and

displacement fields.
The vectors of stress and displacement components are defined as

o — {o, oo} and = ) )
and can be rewritten in the form
o) = "¢l +,/6¥ + 6 and wul ="l + ub + ul (34)

In these expressions for stress and dlsplacement components, the terms A’”o-( ) ’”up") and fo[g"), fu[(,” are
associated with the homogeneous solutions of mechanical and thermal loadmgs respectively. In the case of
thermal loading, ‘6! and 'u’¥) represent the known complementary solutions for non-singular stress and
displacement fields. These vectors can be defined as

N Ry
=Req¢ > > Fk (r,0; 2,)§ O™,
n=0r=1+d,9 (35)

N Ry

> 3 GY(r6; 7»n)(if£>”’°€m~}
n=0

=0r=1+0d,0

Ry

St FW @ 0;2,)4Y oc,,,}

0r=1+6,9

Ra
Z Gk (r 6 /“")an a"’}

0r=146,0

" Re{
" Re{

¢ 0' =F¥(r, 0)q* Ctu;k) G ®(r, 0)q" + rr; Toe, (37)

in which e’ {1 0}. B
The vector an contalns the known coefficients A* B! () Cflk), and fo‘) in terms of «,,. corresponding to 4,.

n’

The matrices Fn , fo‘), . ), and G are defined as

uMz

=

(36)

||
Mz

n

@cosi,ﬁ Gt ‘”) sinZ,0 —cos(2+7,)0 —sin(2+ 4,)0

FY) = | @) o5 7,0 <2+44~> sin,0  cos(2+4,)0  sin(2+ 4,)0 (38)
);7” sin 1,0 —% cost,0  sin(2+7,)0 —cos(2+ 4,)0

and
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a® cos 2,0 a®sinA,0 —bWcos(4, +2)0 —b¥sin(4, +2)0

G — il | n n 39
L c®sin 2,0 c¢®cos,0 bPsin(L, +2)0  —b% cos(4, +2)0 (39)
in which
a®) = (2= ) _vk(2+/1"); (k) :71 +va ;e :7/1"(1 ) +4 (40)
" 4E (1 + 4,) "B+ 4) " 4E (1 4 4,)
cos20  sin20 4§ 1 0
F¥Y =|—cos20 —sin20 ¢ 1 0 (41)
—sin20 cos20 —1 0 0
and
G — lg—k” cos 20 lz_ku sin 20 25‘: 0 14}? 0 @)
‘ —Uu%sin20 Y% cos20 Llnr 0 -1
k k k

The mechanical and thermal components of the stress and displacement vectors can be rewritten in terms
of real variables as

N R, N R,
el =3 Z &, and ;"ub=Y">" G4, (43)
n=0 r— n=0r=1+0,
N Ry . Ry
K _ Z Z F¥%,.  and ;_’u Z Z GWrg,, (44)
n=0r=140,0 n=0r=140,9
cro;k) = Fﬁk)qe and L'lul(;k) = Gik)q£k> + rKy TOer (45)
where the real matrices of order (3 x 2), Fffj) and (A},(f,), and the real vectors, "4, and ‘a,,, of order 2 are
defined by
= [Re{ral || - m{F0q | (46)
Gl = [Re{ci“qﬁf?} —m{GPg }] (47)
and
"a! = {Re("o,), Im("a,.)} (48)
‘a,, = {Re(‘w,), Im(‘0,)} (49)
By defining the matrices and vectors in the form
R R -l AR AR A
F;(I) = |:Fn(l+(5,,0):Fn(2+5,,0) e :FnR,,}v qu [G (14+8,0) Gn<2+a,,0)‘ e :G,,RJ (50)

maT 2 maT maT txT _ )txT txT tx
a, = { o, n(143,0)7  Pon(246,0)7 * * dn&}’ a, = {%(H&no)’ O(248,0)7 " * %Rn} (51)
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the mechanical and thermal components of the stress and displacements can be rewritten in a concise form
as

N N
el = ZFnk)’"an and ;"a® = Zf;f,k)m&,, (52)
n=0 n=0
N R N .
A‘o[gk) = ZFnk)t&,, and ,fuff‘) = ZG“‘)t&n (53)
n=0 n=0
Jo® =F¥q, and Y = GWq" + ric The, (54)

2.2. Global element stiffness matrix

The stiffness matrix for the global element of multiple dissimilar materials under mechanical and thermal
loading is obtained by considering the total potential expressed in the form

1
= k k) jlk k
= {E/A C&ﬁ«npa/f‘c{n d4 — / a/fm 81,/;?«,1 )d4 — / ®©(u® —gbydr — /r kil ’dr} (55)
) k

with o, f, 7, n =x,y. Non-stress-producing strain components in each material sector due to uniform
temperature variation, 7y, are denoted by O.Sg;f) and defined as

) = KWy, (56)

The total strain components, 832, are decomposed as

k k
(e(uﬁ) =, Fac[i') + J+c € i/; (57)

in which ;f"e“ﬁ represents the unknown strain components due to mechanical loading only and ,“ﬂ,’sg;)

represents the known initial strain components arising from uniform temperature variation, 7j, in a domain
of multiple dissimilar material sectors. The corresponding displacement components are given by

ul) = "ul) 4l (58)

The left superscripts m and ¢ denote the contributions associated with mechanical and thermal loading,
respectively. The left subscript 4 represents the deformations corresponding to homogeneous (eigen) system
whereas the left subscript 1+ ¢ represents the deformations corresponding to both homogeneous and
complementary solutions.

With the material property tensor for each sector specified by

E
[ S R SR o S Y 59
apym (1 + ) 8+ (1 +Vk)(1 72‘}1{) apOyn ( )
the stress components due to mechanical and thermal loading are obtained from
") = Cop" 25 (60)
k k o
i+ct0'i/5> = Ciﬁ)ﬂ ()V+ct3§f1) - 3557)) (61)

The total (actual) stress components, oéz), can be decomposed as

k m _(k k
O-Ec/i) =2 Jiﬂ) + Hclaiﬁ) (62)
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The unknown components of traction and displacement vectors along the common boundary segments,
I’y (shown in Fig. 2), are denoted by # and #*. These traction components can be decomposed as

10 = ) 4 W (63)
in which

m3 m (k) ~(k A k) ~(k

2 tik) =, aiﬁ)n%) and ;HLCtlLik) = ,1+Ct0§ﬂ)}’l;3) (64)

The known applied traction components along the common boundary segments are represented by *#%)
Substituting for the total strain components from Eq. (57) along with the strain—displacement relations
in the expression for the total potential, Eq. (55) and applying the divergence theorem while invoking the
automatic satisfaction of the equilibrium equations in each sector reduces the total potential expression to

K
1 (k) A
S et ol k)
T = ot "un,’ dIl Jo u dF
k_l{z/l_k ap ~ Yo B +\/F/;A+ aff 4

K
—Z{/ 0, cul dF+/ 1O (mu® — ")dF+/ a;k>dr}+n0 (65)
k=1 I Iy I

in which 7, represents the total potential associated with the known initial strain and stress components
arising from thermal loading only

K
1 k k) o
no—Z{z /F e ety AT — /rkci’%'" PRI dF} (66)
k

k=1

Because the initial strain and the corresponding initial stresses in this expression are known from the so-
lution for thermal loading only (described in Appendix B), its first variation automatically vanishes, i.e.,
677.'0 =0.

The boundary integrals describing each sector I'; can be decomposed as

K K—1
S [ ateienpar =S [ aoitupars [ e muetngar)
=1 7Tk Iy T

k=1

+/f i’"gi[;)i’nuiK)ﬁ,(l;K)dr+/f imaitl})inluil)ﬁ,(lgl>dr
« 1

K
+y / el muPal dr (67)
k=1 YTk
The continuity conditions between the adjacent sectors require that
lma&k) — )Mmﬁgk+l) (68)
Mol = =l ke (69)
with k =1,...,K — 1. For a closed junction, the additional continuity conditions are
).mﬁ&K) _ )umaél) (70)
A (71)

In the presence of an open junction with traction-free surfaces, the additional continuity equations are
replaced by
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e BIRK) = X"Gilﬁ)ﬁil) =0 (72)

oaff "o

Enforcing these conditions and noting that the adjacent boundaries are related to each other by I = Ty
and I'y = I', the expression for the potential energy becomes

K
1 . .
T = Z{ i /f Amoi];;)imuik)n;}k) dl" 4 / /‘~+ct0(fﬁ)imu£k)n;;k) dr}
1 k

k= Iy
K

S [ iaars [ e —aars [ ok 73)
=1 \JI Iy Iy

Substituting from Egs. (63) and (64) into #¥) and invoking the condition that thermal stresses do not
induce boundary tractions, ,,.//® = ;. '¢"7

| o n;jk) = 0 as derived in Appendix B results in the matrix repre-
sentation of the total potential in the form

K
=y _1 / @ {07 my® g / 6 R0 ) g
=1 2 Jr [

T,
+ / G GG / “t0 o) dF} + 7 (74)
Iy Iy

in which the vectors ;”6¢®, ;"u® ;. ‘a® *t® and a* are defined as

et = {;_mai’;), ;,’”ai?, 1”’0')(51;)} (75)
;) = {{”uﬁk),;_’”u;k)} (76)
S P ™)
07 _ {*ék)ft}(lk)} (78)
k" — {Axk>,ﬁ§gc>} (79)

i@ =1 0 ad (80)
~(k ~(k
e

(2 N )
GOP GEP -2

zP = @O GO 20 ®1)
Sk k) (k) 5k SN2 (A2
an| il )nﬁ) (a%)) (n)< )
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and
pk) _pk)
n n
9= | ’ 82
u ﬁ;k) ﬁ,(ck) ( )

;V'”c(“ = ng);LmO'[()k) (83)
) =zl (84)
).+ctu(k) = Zflk)iHrctul(,k) (85)

and their substitution in the total potential results in

K
1 . .
7= Z{ - / z'"G,(,“TZf,”rn(")Zik)zmu,(f) dr — /r ).m6[<)k>rZfrk)rn(k)zf,k)ﬂctll[(,k) df}
k

k=1 Iy
s Ty (k)T i (k) i3 (K r

+ Z{ / el 2B aa R dr — / @’ ¢ ® df} + 7 (86)
= \JT Iy

The vector of displacement components, %), along the common boundary between the global element
and the conventional elements can be expressed in terms of the nodal displacements of the conventional
elements as

i = AWy (87)

in which the matrix A% contains the linear interpolation function compatible with those of the conven-
tional elements. The vector v contains the nodal degrees of freedom associated with the conventional ele-
ments located on the boundary segment I’.

Substituting for ;"¢ ;u, and a® from Eqgs. (52) and (87) in the expression for the total potential
leads to

- _% sz; megTH®mg sz;m&Tff(k) + kzl{;m&TR(k)V _ IZK;vT*f(k) + 70 (88)
in which
nel — {mag el el ,'"&;} (89)
and
Hy Hy - Hy
q® — H{ HY Hiy with HY = / B0 20 G0Z OG0 ar (90)
T )
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R = {ng>",R§k>",ng>",...,ijk)’} with RY = / FO Z0 30 A® g (92)

T

and
g6 _ / AR ) g (93)
Ty
Defining

K K K K
H=) HY R=)RY 1=>"1" -f=>"" (94)

k=1 k=1 k=1 k=1

permits the expression of the potential energy in its final form as
1
n=— E’”&TH'”& — gl 4 "g"Ry — vI*f + 7, (95)

The unknown vectors "é& and v represent the generalized coordinates associated with the mechanical de-
formations and the nodal displacements arising from both thermal and mechanical loading, respectively. In
order to express the total potential in terms of one unknown vector, v, the first variation of the total po-
tential with respect to & is taken, leading to

o = —(S’”&T{H’”’& . Rv} +dmp (96)
in which
H={H+H}=H ©7)

where H = H’ is based on Maxwell’s reciprocal theorem. While noting that dmy = 0, enforcing the first
variation with respect to "& to vanish results in

5’"&T{H””& L Rv} ~0 (98)
Solution of this equation yields "& in terms of the nodal displacement vector, v, as

"4 = H '{Rv — 'f} (99)
Substituting for & in the expression for the total potential leads to

n=WRH'Rv—vVRH"f- v+ ITTH " T +m, (100)

Enforcing the first variation of the total potential to vanish results in the nodal equations of equilibrium for
the global element as

dn=v {Kv—"F—-"f} =0 (101)
leading to
Kv="f+'F (102)

in which K and ‘F are defined as K = R"H 'R and ‘F = R"H'. The vector *f represents the internal load
vector at a node common to both the global and conventional elements. If a node is free of conventional
elements, the components of the load vector represent the external force components. The vector ‘F rep-
resents the reaction force that suppresses the deformation, resulting from thermal loading only, at the
common nodes of global and conventional elements.
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3. Numerical results

The validity of the solution method has been established by analyzing the bi-metal thermostat considered
by Munz and Yang (1992), the bi-material plate with an interface crack investigated by Yuuki and Cho
(1989), and the crack perpendicular to the interface of a bi-material strip reported by Gadi et al. (1995). In
addition, a convergence study is conducted that assesses the present method’s dependence on the global
element size and number of eigenfunctions retained in the series representation of the stress and dis-
placement fields. Finally, a circular bi-material inclusion embedded in a different material infinite in extent
is considered under uniform temperature change.

3.1. Bi-metal thermostat

Although the present formulation permits combined mechanical and thermal loading, the bi-metal
thermostat shown in Fig. 3 is considered under either mechanical or uniform temperature loading in order
to compare the present stress field predictions with those of Munz and Yang (1992). As shown in Fig. 3, the
parameters H,, H,, and L describe the loading and the geometry of the plate. The position of the global
element surrounded by conventional elements in the finite element model is also shown in Fig. 3.

conventional

finite elements H
L1 1

&

P
common —

nodes X

—_global
/
— element

AT=-100 2

E)v, o,

2L

Fig. 3. Geometry and loading of a bi-metal thermostat.
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The first and second materials have the same Poisson’s ratio of v; = v, = 0.2. Their thermal expansion
coefficients are specified as o) = 15 x 107° K ' and o =5 x 10°® K~'. The first material has a Young’s
modulus of £; = 280.0 GPa. The Young’s modulus of the second material varies as E, = 14.737, 31.111,
70.0, 120.0, 186.67 GPa. The geometry is defined by H, /L = H,/L = 2. The applied stress, oy, in the direction
perpendicular to the interface is unity, and the applied uniform temperature change is AT = —100 K.

Under plane strain conditions, the present results are also compared against the finite element analysis
predictions with an extremely refined mesh of only conventional elements using ANSYS, a commercially
available finite element analysis program. In the finite element analysis with conventional elements only, the
sub-modeling feature of ANsys is utilized to achieve acceptable mesh refinement near the junction. The
model consisted of 20,000 elements. In the sub-modeling phase, three times the region of the global element
is modeled using, again, 20,000 elements.

The comparison of the results for the tangential stress along the interface near the open junction is
presented in Figs. 4-6. The results concerning mechanical loading are presented in Fig. 4. The results
concerning uniform temperature and two different plate sizes are shown in Figs. 5 and 6. As observed in
these figures, the predictions from the present analysis and the finite element analysis with an extremely
refined mesh are in remarkable agreement up to a very small distance away from the junction point. As is
well known, the results of the conventional finite element analysis suffer from accuracy at a point very close
to the junction.

The agreement between the present analysis results and those of Munz and Yang (1992) improves as the
junction point is approached because both analyses include the leading-order term of the asymptotic so-
lution. However, the solution reported by Munz and Yang (1992) loses its accuracy away from the junction
point because it is based on a relationship, obtained through curve fitting of a fifth-order polynomial, in
terms of the leading order of the singular behavior, 4;, as

Gun(r,0) = ﬁgw (103)

192 1 ——Munz & Yang (1992)

E +E; —o— Present analysis

+ ANSYS
172 4

(0.9,0.173)

(0.8,0.134)

112

(0.2,0.0081)

0 0.005 0.01 0.015 0.02 0.025 0.03
r/L(6=0°

Fig. 4. Variation of the peeling stress away from the junction along the interface for different material combinations under mechanical
loading.
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Fig. 5. Variation of the peeling stress away from the junction along the interface for different material combinations under thermal
loading: (a) 4; = 0.074, 0.134, and 0.173; (b) 4, = 0.0081 and 0.033.

15
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Fig. 6. Variation of the peeling stress away from the junction along the interface in a small and large plate of different material
combinations under thermal loading.

with
g(A1) =1—2.89% + 11427 — 51.9/] +135.7/ — 135.8/] (104)

where ¢ = o, for remote mechanical loading (no thermal loading) in the direction perpendicular to the
interface and & = ao[{(r/L)" /g(41)} — 1] for thermal loading (no mechanical loading). Munz and Yang
define o, as
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6o = Aa AEAT (105)
where

Ar=o(14w) = +v), AE=1/(L_L (106)

o= 0o Vi 0%} V2), = E Ej

with Ef = vi(1 +v)/E; and Ej = v,(1 + v,)/E,. The coefficients of the polynomial are calculated by the
finite element method.

The results reported by Munz and Yang (1992) deviate from the present analysis and ANSYSs predictions
significantly as the magnitude of the leading-order singular term decreases. Also, their results are sensitive
to the size of the bi-metal thermostat, especially for small values of the leading-order singular term, as
shown in Fig. 6.

3.2. Interface crack in dissimilar materials

In order to validate the stress intensity factors, K; and K5, and the J-integral values, a finite geometry bi-
material plate with an interface crack (Fig. 7) is considered. As assigned by Yuuki and Cho (1989), both
materials have the same Poisson’s ratio, vi = v, = 0.3, and the ratio of their Young’s moduli, £, /E,, varies
from 2 to 100. The center crack length-to-plate width ratio, 2a/W, is specified as 0.1, 0.2, 0.3, 0.4, and 0.5,
with W = 10 in.

The stress field along the interface near the crack tip can be described by

K1 + iKz }"_;“1
V2

in which the stress intensity factors, K; and K, are obtained from

Oy — iO',g = lim
r—0

fro TTTITT]

) global clement with

9 common nodes

|

|
{ E,, v, o, w
3 5 / b (T
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Fig. 7. A central bi-material interface crack in a finite geometry plate under uniform tension.



A. Barut et al. | International Journal of Solids and Structures 38 (2001) 9077-9109 9095
K] + iKz =V 27T{R€[F99(0; /11)] — IRG[EQ(O, }"1)]}0:11

J-integral calculations are based on the expression

K O11
7= /@ k [U<k>n5f> — (1B + D) + t;f>a<k>r] edo
where U® is the strain energy density of the stress-producing strains, ¥ = a(kﬁ)nﬁ (o, f =1,2) are the
tractions along the boundary of the integration path, »*) and u} are the partlal displacements of the global
element with respect to local x-coordinate evaluated along the path of integration, ¢ is a small radial
distance between the junction and the circular path of integration, &%) is the coefficient of thermal
expansion associated with the kth sector, and T is the uniform temperature change within the global ele-
ment.

For a plate subjected to unit uniform stress, ¢, = 1 1b/in.2, in the direction perpendicular to the interface
and under plane stress conditions, the stress intensity factors and the J-integral values from the present
analysis are compared with those of Yuuki and Cho (1989) in Tables 1 and 2. A schematic of the two

Table 1
Fracture parameters for a finite plate with an interface crack by using a global element of 9 common nodes
El/Ez Z(Z/W K]/GU\/ﬁ Kz/O’o\/ﬁ J-lntegral
Present Yuuki and Percent Present Yuuki Percent Present Yuuki Percent
analysis Cho difference analysis  and Cho difference analysis and Cho difference
(1989) (1989) (1989)

2 0.1 0.99532 0.99642 0.11 0.07143 0.07174 0.43 1.15716 1.15979 0.23
0.2 1.01556 1.02009 0.44 0.04415 0.04290 2.90 2.40160 2.42276 0.87
0.3 1.04907 1.05461 0.53 0.02764 0.02838 2.60 3.83940 3.88021 1.05
0.4 1.10030 1.10588 0.51 0.01562 0.01569 0.41 5.62862 5.68590 1.01
0.5 1.17637 1.18298 0.56 0.00617 0.00693 11.02 8.04086 8.13147 1.11

3 0.1 0.98696 0.98913 0.22 0.10629 0.10781 1.41 1.00030 1.00500 0.47
0.2 1.00902 1.01481 0.57 0.06521 0.06667 2.19 2.07568 2.09987 1.15
0.3 1.04280 1.04916 0.61 0.04025 0.04179 3.68 3.31661 3.35753 1.22
0.4 1.09347 1.10074 0.66 0.02506 0.02382 5.18 4.85709 492215 1.32
0.5 1.16822 1.17596 0.66 0.00738 0.00951 22.42 6.92727 7.01948 1.31

4 0.1 0.98013 0.98260 0.25 0.12678 0.12872 1.51 0.91663 0.92164 0.54
0.2 1.00364 1.00989 0.62 0.07736 0.07924 2.37 1.90186 1.92602 1.25
0.3 1.03762 1.04485 0.69 0.04723 0.04899 3.59 3.03749 3.08033 1.39
0.4 1.08781 1.09564 0.71 0.02506 0.02779 9.833 4.49441 4.50914 0.33
0.5 1.16144 1.16996 0.73 0.00738 0.00965 23.50 6.32982 6.42324 1.45

10 0.1 0.96005 0.96252 0.26 0.17070 0.17325 1.47 0.75410 0.75858 0.59
0.2 0.98772 0.99435 0.67 0.10307 0.10610 2.86 1.56432 1.58618 1.38
0.3 1.02213 1.02992 0.76 0.06138 0.06540 6.15 2.49474 2.53398 1.55
0.4 1.07069 1.07846 0.72 0.03037 0.03406 10.84 3.63971 3.69340 1.45
0.5 1.14070 1.14895 0.72 0.00527 0.01000 47.28 5.16002 5.23520 1.44

100 0.1 0.93912 0.93992 0.09 0.20336 0.20490 0.75 0.64622 0.64771 0.23
0.2 0.97071 0.97506 0.45 0.12247 0.12464 1.74 1.34000 1.35259 0.93
0.3 1.00527 1.01120 0.59 0.07211 0.07524 4.17 2.13280 2.15887 1.21
0.4 1.05178 1.05732 0.52 0.03428 0.03782 9.37 3.10028 3.13372 1.07

0.5 1.11755 1.12398 0.57 0.00328 0.00623 47.32 4.37061 4.42112 1.14
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Table 2
Fracture parameters for a finite plate with an interface crack by using a global element of 17 common nodes
E]/Ez 2LI/W KI/O'O\/E Kz/O’g\/ﬁ J-Integral
Present Yuuki and Percent Present Yuuki Percent Present Yuuki Percent
analysis Cho difference  analysis and Cho difference analysis and Cho difference
(1989) (1989) (1989)

2 0.1 1.00062 0.99642 0.42 —0.07238 —0.07174 0.89 1.16961 1.15979 0.85
0.2 1.02114 1.02009 0.10 —0.04502 —0.04290 4.94 2.42818 2.42276 0.22
0.3 1.05493 1.05461 0.03 —0.02849 —0.02838 0.39 3.88255 3.88021 0.06
0.4 1.10651 1.10588 0.06 —0.01647 —0.01569 4.99 5.69244 5.68590 0.12
0.5 1.18308 1.18298 0.01 —0.00704 —0.00693 1.58 8.13288 8.13147 0.02

3 0.1 0.99326 0.98913 0.42 —0.10831 —0.10781 0.46 1.01341 1.00500 0.84
0.2 1.01569 1.01481 0.09 —0.06720 —0.06667 0.80 2.10365 2.09987 0.18
0.3 1.04981 1.04916 0.06 —0.04225 —-0.04179 1.10 3.36181 3.35753 0.13
0.4 1.10091 1.10074 0.02 —0.02402 —0.02382 0.84 4.92378 4.92215 0.03
0.5 1.17625 1.17596 0.03 —0.00964 —0.00951 1.32 7.02303 7.01948 0.05

4 0.1 0.98709 0.98260 0.46 —0.12970 —0.12872 0.77 0.93018 0.92164 0.93
0.2 1.01103 1.00989 0.11 —0.08030 —0.07924 1.34 1.93066 1.92602 0.24
0.3 1.04539 1.04485 0.05 —0.05023 —0.04899 2.53 3.08386 3.08033 0.11
0.4 1.09605 1.09564 0.04 —0.02817 —0.02779 1.38 4.51255 4.50914 0.08
0.5 1.17031 1.16996 0.03 —0.01068 —0.00965 10.72 6.42726 6.42324 0.06

10 0.1 0.96763 0.96252 0.53 —0.17540 —0.17325 1.24 0.76699 0.75858 1.11
0.2 0.99575 0.99435 0.14 —0.10789 —0.10610 1.69 1.59122 1.58618 0.32
0.3 1.03055 1.02992 0.06 —0.06637 —0.06540 1.47 2.53740 2.53398 0.13
0.4 1.07959 1.07846 0.10 —0.03560 —0.03406 4.49 3.70147 3.69340 0.22
0.5 1.15024 1.14895 0.11 —0.01083 —0.01000 8.31 5.24704 5.23520 0.23

100 0.1 0.94561 0.93992 0.61 —0.20758 —0.20490 1.31 0.65599 0.64771 1.28
0.2 0.97748 0.97506 0.25 —0.12674 —0.12464 1.69 1.35996 1.35259 0.54
0.3 1.01229 1.01120 0.11 —0.07649 —0.07524 1.66 2.16389 2.15887 0.23
0.4 1.05911 1.05732 0.17 —0.03885 —0.03782 2.71 3.14454 3.13372 0.35
0.5 1.12534 1.12398 0.12 —0.00812 —0.00623 30.32 4.43191 442112 0.24

different global element configurations used in this study is given in Fig. 7. The first and second configu-
rations have 9 and 17 common nodes, respectively, with the conventional finite elements as indicated in this
figure. Also shown in Fig. 7, h, and A, denote the size of the global element in the x- and y-directions,
respectively. The results presented in Table 1 are obtained with a global element having 9 common nodes
with a size of 4, = 0.01% and h, = 0.011W. Table 2 presents results corresponding to a global element with
17 common nodes with a size of h, = 0.02W and A, = 0.022/.

As tabulated in Tables 1 and 2, the present analysis results are not sensitive to the global element size,
and they are in agreement with the values reported by Yuuki and Cho (1989). The numerical values for
normalized parameters, F; and F,, reported by Yuuki and Cho (1989) are converted by

(107)

In order to establish the accuracy of the stress intensity factor calculations from the present analysis,
an infinite dissimilar plate with an interface crack, shown in Fig. 8, is also considered. The Young’s
modulus and Poisson’s ratio for the first material are specified as E; = 1 1b/in.? and v; = 0.3. The Young’s
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Fig. 8. A central bi-material interface crack in an infinite plate under uniform stress and strain in vertical and horizontal directions,

respectively.

Table 3

Normalized stress intensity factors, K} = K, /69+/ma with (i = 1,2) for an infinite plate with interface crack by using global elements

with 9 and 17 common nodes

El /Ez Vi /\,'2 Rice and Sih

Present analysis (9 common nodes)

Present analysis (17 common nodes)

(1965)
Ky K; K K Percent difference Ky K Percent difference
Ki K3 Ki K3
10 1 1.009 —-0.122  1.006 —-0.120 0.41 1.73 1.012 —0.123 —0.26 —0.51
22 0.857 1.011 —0.126  1.007 —0.125 041 0.48 1.012 —0.127 —0.19 —0.73
100 1 1.014 —0.147  1.011 —0.147  0.31 0.47 1.017 —0.149 -0.26 —0.89

modulus and Poisson’s ratio of the second material are varied as shown in Table 3. The center crack
length-to-plate width ratio, 2a/W, is specified as 0.05, with W = 40 in. In the direction perpendicular to
the interface, the plate is subjected to a uniform stress of 6, = 1 Ib/in.2. In order to achieve uniform strain
in the direction horizontal to the interface, the first material is subjected to a horizontal stress of g, =0
and the second material to o, = (v, — viE»/E})0y. The exact solution for this geometry and loading
conditions was reported by Rice and Sih (1965). As presented in Table 3, the comparison of the present
analysis results with the exact solution is remarkably favorable. Referring to the inset in Fig. 7, the results
presented in Table 3 are obtained with two different global element configurations, i.e., 9 and 17 common
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Table 4

Dependency of the normalized stress intensity factors on the global element size and conventional mesh type
hja Number of elements Mesh type Ki/oo\/ma K,/o0\/ma Percent difference

K, K,

0.8 20000 u 1.01246 —0.12343 0.25 0.82
1 12800 u 1.01224 —0.12345 0.23 0.83
0.2 4920 g 1.01186 —0.12352 0.29 0.79
0.4 2924 g 1.01281 —0.12340 0.27 0.79
0.6 2160 g 1.01265 —0.12339 0.25 0.77
0.8 1674 g 1.01238 —0.12337 0.23 0.80
1 1400 g 1.01226 —0.12340 0.21 0.81
1.2 1242 g 1.01206 —0.12342 0.16 0.75
1.4 1056 g 1.01149 —0.12334 0.15 0.85
1.6 920 g 1.01145 —0.12347 0.10 0.87

Table 5

Dependency of the normalized stress intensity factors, K = K, /o¢\/na with (i = 1,2) on the number of eigenvalues (roots) retained in
the analysis

Number of eigenvalues Ky K; J-Integral Percent difference

ki K
25 1.01114 —0.12347 1.64592 0.12 0.85
30 1.01105 —0.12329 1.64555 0.11 0.71
35 1.01099 —0.12333 1.64537 0.11 0.74
40 1.01089 —0.12336 1.64507 0.10 0.77
45 1.01094 —0.12347 1.64529 0.10 0.85

nodes with conventional finite elements. The global element with 9 common nodes had a size of A, =
0.4379a and h, = 0.5009a whereas these parameters were /i, = 0.9065a and &, = 1.0663a for the global
element with 17 common nodes.

Considering the same infinite bi-material plate having an interface crack, the effects of the global ele-
ment size and the number of eigenvalues retained in the series representations in the solution method on
the stress intensity factors are investigated. Table 4 presents the stress intensity factors for varying global
element size for a specified ratio of Young’s moduli and Poisson’s ratios, E,/E, = 10 and v, /v, = 1, re-
spectively. The normalized global element size is defined by & = h, = h, as shown in Fig. 7. Also, the effect
of the number of conventional finite elements with either a uniform or graded mesh (denoted by u and g
in the table) is captured. When all the elements in the finite element model are squares, the mesh is re-
ferred to as uniform. If the mesh is refined toward the crack tip, it is referred to as graded. It is observed
in Table 4 that the present results differ from the exact solution given by Rice and Sih (1965) by less than
1%. In Table 5, the effect of the number of eigenvalues retained in the series representation on the stress
intensity factors is captured by considering 2545 eigenvalues; the minimum number of eigenvalues re-
quired for the current global element is 23. It is apparent that there is no significant dependence on the
number of eigenvalues since the percent difference with the exact solution for K| and K, is always less than

1%.

3.3. Crack perpendicular to interface of bi-material strip

In the case of a crack perpendicular to the interface of dissimilar materials, the stress intensity factors, K|
and K, are calculated and compared with the results reported by Gadi et al. (1995). The geometry of the
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Fig. 9. A crack perpendicular to interface of a bi-material strip under uniform strain.

plate is shown in Fig. 9. The plate is subjected to constant strain, resulting in o,, = 0,1 G2(1 — v;)/
Gi(1 — v,). As assigned by Gadi et al., both materials have the same Poisson’s ratio, v; = v,, and the ratio
of their shear moduli, G|/G,, varies from 1 to 10. The center crack length-to-plate width ratio, 2a/W, is
specified as 0.5, with W = 4. The length of the strip is specified as 20a. The results presented in Table 6 are
obtained with the conventional finite element model using two different global elements, as in previous
cases, one with 9 and the other with 17 common nodes (refer to Fig. 7), having the sizes of &, =
h, =h=0.2195a and h, = h, = h = 0.44146a, respectively. Under plane strain conditions, the stress in-
tensity factors from the present analysis are compared with the values reported by Gadi et al. As presented
in Table 6, the comparison of the present analysis results with those available in the literature is favorable.

Table 6
Normalized stress intensity factor, K, /ooma® with @, = Re(4;), for a crack perpendicular to the interface of a bi-material strip by
using global elements with 9 and 17 common nodes

Ey)/E\ 0,0/01 Vi =" Gadi et al. (1995) Present analysis
Gupta FRAC2D ABAQUS 9 Common nodes 17 Common nodes
10 0.2 4.922 4.885 4912 4.942 4.924
10 0.35 3.070 3.079 3.070 3.094 3.076
0.1 0.2 0.699 0.798 0.808 0.795 0.797

0.1 0.35 0.731 0.836 0.844 0.834 0.834
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Fig. 10. A circular bi-material inclusion with an interface crack embedded in an infinite plate under thermal loading.

3.4. Circular bi-material inclusion embedded in an infinite plate under thermal loading

Finally, a circular bi-material inclusion embedded in a different material infinite in extent and under a
uniform temperature is considered. As shown in Fig. 10, a crack is situated between the two semi-circular
inclusions with an inclination angle of 6. The material properties and geometric parameters are specified by
R/a =40, with a =1 in.; E;/E; = 10, E5/E, = 25; v = v, = v3 =0.3; oy /o, = 2; and o /a3 = 20. For an
applied uniform temperature change of «3AT = 100, the normalized stress intensity factors are calculated as
Ky /(0zATEja®) = 0.081019 and K, /(s AT E1a®) = —0.155642 with w; representing the real part of 4.
Because of the axisymmetric nature of the loading and geometry, the stress intensity factors are indepen-
dent of the crack inclination angle.

4. Conclusions

In order to capture the singular stress field under mechanical and thermal loading in the regions
addressing either an open or a closed junction of multiple dissimilar materials, a hybrid global (special)
element has been developed utilizing the exact solution for the stress and displacement fields based on the
eigenfunction expansion method. The global element for arbitrary geometrical and material configura-
tions is coupled with traditional (local) elements while satisfying the inter-element continuity. The cou-
pling between the hybrid global element and conventional finite elements is implemented into ANSYS, a
commercially available finite element program. Also, the global element is integrated into the ANSYS
graphical user interface for pre- and post-processing. The solution method is validated through existing
asymptotic solutions and conventional detailed finite element analysis.
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Appendix A

The non-dimensional functions £y (0; 4,), GX(0; 4,), £13(0), ¢ (0) and 4 () in Eqgs. (1) and (2) can be
derived as

2- 1, - .
EW(0;4,) = ( 2 ) (4% cos 2,0 + B¥ sin 2,0] — [CM) cos(4, +2)0 + DV sin(4, + 2)0] (A.1)
® 9. 5y - CH ) 0w ®) gin ) ) ® g
Fpy' (05 4,) = 2 (41 cos 7,0 + B sin 4,0] + [C) cos(Z, +2)0 + DI sin(Z, + 2)0] (A.2)
I . o
F¥(0;4,) = 2 A sin 2,0 B cos 1,0] + [CW sin(4, +2)0 — D cos(4, +2)0) (A3)
W [ C=Z) = w2+ ) BO in 201 — — LT 1e® o5
o { A1) A o8l + B sin 0] = g = |G cos(ln +2)0
+D® sin(2, + 2)0] } (A.4)
l —+ Vi

Gg{) _ {/1,,(1 —+ Vk) +4

(4% sin 4,0 + B® cos 4,0] + [C® sin(4, +2)0

4E (Z,+1) t7" Ei(A,+1)
— D cos(4, +2)0) } (A.5)
£¥(0) = 4P cos260 + BH sin 20 + 1c®6 + 1pW (A.6)
Sa(0) = —4® cos 20 — BW sin 20 + 109 + 1p® (A7)
£9(0) = BY cos 20 — 4% sin 20 — 1c® (A.8)
1 1 - 1
g%(0) = (Chal) [4%) cos 20 + B® sin 20] + (- v) Cc®o 4 ~D® (A.9)
Ey ¢ 2E; ¢ 2 ¢
1
g (0) = - % (4% sin 20 — BY cos 20] + E® (A.10)
k
1
i) =0 hY(0) =~ (A1)
k
in which 4%, B®_ Cc® pW 40 pw Cc® DB and E® are the unknown coefficients associated with the

kth sector.
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The matrices P¥, P®

—cos20 —sin20 g
—sin 26 cos 20 -1
PY () = % cos 20 % sin 0 Z‘: 0
— % sin20 cos20 0
o o2
P (0;2,) =

24 y
= cos ,0

242 o
=7 sin 4,0

)’74” sin 4,0 —*4—" cos /1,0
(2=2n) =i 247n) ] QR=2n) =k (2+7n)
W CoS /L,,@ W sim i,,()
Jn(14+ve)+4 s Jn(14v)+4 1
m Slni,,() 7m COS/L,,O
_ _qi 0 1
T<k)(9) _ cos 20 sin20 5 5 0
¢ —sin20 cos20 —1 0 0

24/,
=i cos 2,0
T (0; 7,) = [ j

Iy o
2 sin 4,0

n 1
— % cos 4,0

% sin /,,0

cos(4, +2)0
sin(4, +2)0

T®, and T% in Eqgs. (3)(6) are given by

Lo
0 0
1—v,
25,:c 0
0 1
0 o0
cos(4+2)0
sin(A + 2)0
— Fite cos(4y +2)0
14+v

sin(4, +2)0

Ex(1+7,)
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sin(4, +2)0
—cos (4, +2)0

1+
Ep(1+7,)

sin(4, +2)0

14+
Er(1+2,)

cos(4, +2)0

sin(4, +2)0
—cos(4, +2)0

(A.12)

(A.13)

(A.14)

(A.15)

The expression for the rotation of the first material sector, which results in the constraint condition of no
rigid-body rotation is given in the form

ol =1~ & cV :
4E, ¢ ¢

obtained form

1 (1) (1
o [a(””n )_ Ou, ]

| or 20

1

—_

The known vectors, r;, with j = C, O, in Eq. (23) are defined as

rl = {OT,rE,”T N -
and

L= {*ri”r — '

AU Ll
5'2)T’r£.2)T _ rgz)T’

rgKV,oT,o}

in which the vector “r'® is a modified form of r'® defined as

T = 10,0, — Ty, 0}

[4(V sin 4,0 — BV sin 1,0]

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)
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The coefficient matrices, S; (j = C,0), in Eq. (23) are associated with the non-homogeneous system of
equations and defined as

[ T(0) 0 0 ce 0
Pl(0) —PP(6) 0 - 0
0 P(0,)  —PY(0,) 0
So = (A.21)
P V(0) —PM(0x)
0 T (0x)
L Gk 0 ]
and
<P (0) 0 0 —P%)(27) T
PU(0) ~PP(0) 0 0
0 PP(0)  —PY(0y) 0
0 0 0 PE V(0 ) PR (0 )
L Cr 0 0 0 0 |
in which *P® (k = 1,K) is a modified form of P* defined as
—cos20 —sin20 g 10
—sin20 cos 20 -1 0 0
PUO) = | |, L I (A.23)
“E’—kk cos 20 lsz sin 0 le: 0 le: 0
—%sin20 cos20 0 0 1

The modification of r¥) and P¥ as “r® and *P% removes the redundant equation arising from
hy(0) — hy (2m) = 0 (A.24)
in the case of a closed junction, leading to

Lem, L

_ ) — A2
£ < +—=C 0 (A.25)

E ¢
The coefficient matrices, Q;(4,), with (j = C,O), in Eq. (23) are associated with the homogeneous system
of equations and defined by
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[ P05 4,) 0 —P® (27, 7,)]
PU(01;2,) —PY(0,;2,) 0
0 PP (0y;2,)  —PP (02 ,)
Qc = (A.26)
0 0 0 PED 0k 13 4,) PO (0k 13 4,)
and
[TV (0; 4,) 0 7
PY(01;2,) PP (01;4,) 0
0 PO (0x2,)  —PP(0x2,) 0
Qo = (A.27)
: : P D (0k 13 2,) PE(0k-1; )
L0 0 0 0 T (0x: 2) |

Appendix B

The total potential in the domain of multiple dissimilar material sectors under only thermal loading can
be expressed as

K
1
_ (k) ¢ K dA — 0 d4 — k k
T[Z{Z/ Coz/?m aﬂ m / aﬁvn 1/3 /r1 / -

k=1

fa’;)dr} (B.1)

with o, B, 7, # = x, y. The strain components, siﬁ), arise from the uniform temperature variation, Tp. Its non-

stress-producing strain components in each material sector are denoted by ° ,s /} ) and defined as

Osg;; = K<k)T051ﬁ (BZ)

The displacement components are denoted by ‘u(¥. Requiring the first variation of the total potential to

vanish results in

K K
— (k) (1 (k) _ o (k) st (k) _ 15k (1, (k) _ tok
Sn_Z{/Ak Cdﬂm( up Saﬁ)é & dA} Z{/F 01, ("u u
¢ k

k=1

=0 (B.3)
The stress components due to the thermal loading are expressed as

(k) __ (k)
taaﬂ - Cocﬂ'm

(’85,1’;) - 085,:;)) (B.4)

in which the material property tensor C ,for each sector is specified by
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Ey wE
el Tk 5 5, 4k
afyn (1 + vk) e + (1 + Vk)(l _ 2vk)

The unknown components of the traction vector along the common boundary segments, Iy, shown in
Fig. 2, are denoted by ‘#* and ‘4" with

OupOuy (B.5)

W =0y (B.6)

Substituting for the thermal strain components from Eq. (B.6) along with the strain—displacement re-
lations in the expression for the total potential results in

K K
anz{ /A fag;afu;f;dA} —Z{ /r St (ulP —a)dr + /F 1Wo(ul —fﬁﬁﬁ)dr} =0 (B7)
k=1 k k=1 k k

Applying the divergence theorem leads to

K
6%2;{—/4 ! ;;;/ﬁ’ dA—I—/ Jﬂnk)ét } 1{/ 5’ ) ( tﬁk))df
+ / GRS ("u® fﬁﬁ)dr} =0 (B.8)
Iy

The first boundary integral describing each sector I', can be decomposed as
K-1
Z/ aaﬁn/g Wdr = Z/ aaﬁnﬁ dF+/ 6115 nﬁ 's'u® dr
/ 0/;n/; 5k dF+/ aﬁnﬁ '6'udr

-+ Z / ‘ol o'ull dr (B.9)
k=1 7Tk

or
S ) (k) —~ k) (k) (k+1) - (k+1)
k ~ k +1) + k 1)
g /r ‘ayny 0ulf) dI = E /r ‘T 5tu§(>d1“—|—/F "Gy nﬁ ' u D dr
k k k+1

—|—/ ta(ag)ﬁ;f)étuil{)df—k/_ aﬁn Vs dr
Tg I

+Z/ oy oul dr (B.10)

=gkt (B.11)
tG(l;;ﬁ(k) _ _to.(k;‘*'l)ﬁ((x/»'Jrl) (B12)

o of

with k =1,...,K — 1. For a closed junction, the additional continuity conditions are
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al) = all (B.13)

tai?ﬁuo - ,rai}g)ﬁm (B.14)

In the presence of an open junction with traction-free surfaces, the additional continuity equations are
replaced by

Enforcing these conditions and noting that the adjacent boundaries are related to each other by
I,=T w41 and 'y =T, for a closed junction, Eq. (B.13) is reduced to

Z/ olynsuP dr = Z/ ol s'ul dr (B.16)

With this substitution, the final form of the first variation of the total potential becomes

- K
k) ~(k . o
Sn_z{ - /Ak T dA+/ Gfx,f)n};)&ugk)dr} —Z{/F 330 (1 ® —1g®)dr
k

k=1
+ / TR S(ulb —’zzfﬁ)dr} =0 (B.17)
Ty

leading to the governing equations

‘ol =0 in 4, (B.18)
10 =1gWil on I (B.19)

® =0 on I (B.20)
w = 4® on Iy (B.21)

The expressions for the stress components given in Egs. (36) and (37) automatically satisfy the equilibrium
equations given by Eq. (B.18). However, it is not guaranteed that these stress components satisfy the
condition of zero boundary traction,

10 ='W’ =0 on I (B.22)
Assuming the boundary traction field, /7¥), to be zero reduces the first variation of the total potential to
- k) (k)
o = Z{ / ‘olginy duld dr} =0 (B.23)
k=1 I
This equation leads to the imposition of the condition given by Eq. (B.15) in an average sense through the

minimization of the total potential. It is worth noting that this expression is independent of the boundary
values; therefore, it can be directly utilized to determine the stress and strain fields arising from thermal
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loading. These fields can be treated as known initial quantities in the solution of the same problem under
combined mechanical and thermal loadmgs

Utilizing the matrix representation of ‘a ﬂ ) and ! u® in polar coordinates from Eq. (33), the variation of
the total potential energy under thermal loading is rewritten as

K
o = Z{ / ‘60 20 RO ZD 5ul dF} =0 (B.24)
=1 \JIy
where
tcz(;k) _ Atff}(,k) + thék) and tu[()k) — [u[(,“ + ctllék) (B.25)

The terms , cp )and ;'u p ) are associated with the homogeneous solution of thermal loading. The terms . c[(, )
and C’ulﬁ’d represent the complementary non-singular solution for uniform thermal loading. Therefore, the
variation of the displacement field becomes

Sulf) = 5;u§j‘> + 5;u§f> = oul (B.26)
Substituting for ‘6% and ‘u® results in
LS T T, T AVAN
8m = Z{ / Jol) 2P R ZP sl dr + / ‘o)) 2 W OZSudr } =0 (B.27)
k=1 Ty Ty
After substituting for ‘6®) and ‘u > from Egs. (36) and (37), this expression can be rewritten as
K N N T T ~
o = ZZ’@T{ / FOz0 dr}é’&, + ZZ{ / o A el dr}&‘&,— =0
k=1 i=0 j=0 I 1 i=0
(B.28)

The transpose of this equation yields

6n—zkzN:XN:5f T{ / GV zW {0z ® } +ZZaf T{ / G Tz£k>rﬁ<k>zgk>F§k>dr} =0

=1 i=0 j=0 k=1 i=0
(B.29)
This expression can be written in compact form as
K N N
du=3 % > daHs + 225’ J (B.30)
k=1 i=0 j=0 =1 i=0
where
= / GW' W a0 ZOE® g (B.31)
N 1 u a J .
and

Ltfl(k):/ Gfk)TZ£k>Tﬁ(k)Zfrk)F£k)dF (B.32)
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Note that the matrix Hfjk> is symmetric, and its definition is the same as that given in Eq. (90).
The first variation of the total potential can be cast as

K K
om=Y sa"HWa+> §a’ 1% =0 (B.33)
k=1 k=1
in which
g7 — {’ag,‘a{,’ag, . ,‘afv} (B.34)
and
k k k
2
H(k) _ HIO H.ll HlN (B35)
k * k
Ml HG Y
and
C[f<k)T - {th(()k>rﬂ th§k>rﬂ Utfék)r7 R 7C[f§\$€)r} (B.36)
Defining
K K
H=) HY and /f=) /% (B.37)
k=1 k=1

permits the expression for the first variation of the potential energy in its final form as

on = 5'a"H'a +d'a’ ' f=0 (B.38)
This expression leads to the matrix equilibrium equation as

H'g = /f (B.39)

in which the unknown vector ‘a represents the generalized coordinates associated with thermal deforma-
tions. The solution to this vector is obtained as

‘a=H"'f (B.40)

This solution permits the determination of the stress and displacement fields arising from thermal loading
under zero boundary traction. Therefore, the expressions for ’GI(,") and ’ul(f” are invoked as known quantities
in the derivation of the global element stiffness matrix.
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